

seL4 + TrustZone: Spanning both worlds

Nick Spinale

Arm Research

nick.spinale@arm.com

3rd seL4 Summit - November 15-18, 2020

+ + + + + + + + + + + + + + + +

Orm Confidential Computing and Virtualization

+ + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + +

Confidential Computing

Protecting data at rest in transit in use

Confidential Computing

How far can we get with *software alone*?

Confidential Computing and Virtualization

Confidential Computing and Virtualization

+ + + + + + + + + + + + + +

https://gitlab.com/arm-research/security/icecap/icecap

+ + + + + + + + + + + + + + + + +

IceCap

IceCap: Attestation

arm

IceCap: Extended CapDL

```
arch aarch64
```

```
objects {
         extern host_shared_memory_region (4k)
         extern timer_endpoint = ep
         extern timer_wait = notification
         guest_primary_thread = tcb (...)
         guest_elf_0001 = frame (4k, fill: [...])
         •••
}
caps {
         guest_cnode {
                  0x1: timer_endpoint (W, badge: ...)
                  •••
         }
         •••
}
```


IceCap VMM

Only VM exits are for interrupt injection and GIC emulation <1kLOC (Rust)

IceCap VMM: Preliminary observations

No benchmarks yet

 Preliminary observations suggest host-guest network performance in the neighborhood of AWS Firecracker (open source VMM for KVM used in AWS Lambda)¹

¹ iperf host-guest on Raspberry Pi 4:

- Firecracker: 2.67 Gbit/s
- IceCap: 2.48 Gbit/s

IceCap VMM

Guest may subdivide further

IceCap: Source code

seL4 userland written entirely in Rust (only C is seL4, libsel4, and CapDL)

MirageOS (OCaml unikernel) ported to IceCap

Open source: gitlab.com/arm-research/security/icecap/icecap

IceCap: Big Kernel Lock

seL4 can only run on one core at a time

Effects performance and availability on some types of hardware platforms

Interrupt mitigation + paravirtualized interrupt controller

IceCap: Protecting guests

IceCap: Protecting guests

https://entropy2018.sciencesconf.org/data/cock.pdf

IceCap: Protecting guests

+ + + + + + + + + + + + + +

Arm TrustZone[™]

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + +

Without TrustZone

Physical address space

arm

Physical address spaces

Physical address spaces

28 © 2020 Arm Limited

Physical address spaces

TrustZone: Typical firmware design

Typical two-world layout

TrustZone: Typical firmware design

Typical two-world layout

TrustZone: Typical firmware design

Coarse *world switch* minimizes the attack surface of the TEE

34 © 2020 Arm Limited

+ + + + + + + + + + + + + + + +

seL4 + TrustZone

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

* * * * * * * * * * * * * * * *

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + +

Typical two-world layout

A high-assurance hypervisor can isolate the REE to EL1 using just stage-2 translation tables

EL3

Typical two-world layout

seL4-based analog of typical two-world layout

seL4 can isolate with more granularity

EL3

seL4 can isolate with more granularity

arm

IceCap

arm

IceCap + TrustZone

seL4 + TrustZone: Awaiting Armv8.4-SecEL2

Specified in 2017

Expected to be available in silicon by early 2022

FEAT_SEL2, Secure EL2 FEAT_SEL2 permits EL2 to be implemented in Secure state. When Secure EL2 is enabled, a translation regime is introduced that follows the same format as the other Secure translation regimes. This feature is not supported if EL2 is using AArch32. This feature is mandatory in Armv8.4 implementations that implement both EL2 and Secure state. The ID_AA64PFR0_EL1.SEL2 field identifies the presence of FEAT_SEL2. For more information, see: *Virtualization* on page D1-2318. *The VMSAv8-64 address translation system* on page D5-2534.

https://developer.arm.com/documentation/ddi0487/latest/

+ + + + + + + + + + + + + + +

arm sel4 + TrustZone

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + +

Typical two-world layout

Typical two-world layout with seL4 as the Trusted OS

Typical two-world layout

Typical two-world layout with a Secure Partition Manager (SPM)

Typical two-world layout with seL4 as a SPM

IceCap in context

EL3

Typical seL4-based system, now making use of TrustZone

Untyped memory

Untyped memory must span both the secure and non-secure physical address spaces

Untyped memory

Untyped memory must span both the secure and non-secure physical address spaces

| | Secure | Non-secure | | |
|--------|-------------------|-----------------------|--|--|
| Kernel | Anything | Untyped
Frame | | |
| Device | Unt
Frame (not | yped
t IPC buffer) | | |

S-EL1 kernel requires ++200/--80

S-EL2 kernel requires more invasive changes

- Stage-1 and stage-2 translation tables are architecturally distinct on AArch64, but seL4 currently does not distinguish between the two
- Stage-2 translation tables lack NS bit

Discussion at https://sel4.discourse.group, to result in RFC

|
_ | + |
_ | + |
- L | + | _ | _ | + | - | ± | / |
|--------------|---|--------------|---|----------------|---|----------|----------|----------|----------|---|---|
| | | | | | | | | | | | |
| | | | | | | | | | | | |

| | rn | | | | | | | | [*] Thank You
Danko |
|-------------------|------------------|---------------|-----------------|------------------|-----------|----------|--|--|---------------------------------|
| | | | | | | | | | |
| | | | | | | | | | IVIerci |
| | | | | | | | | | + + 谢谢 |
| Nick Spi | nale | | | | | | | | ありがとう |
| nick.spir | nale@ar | m.com | + | + | + | + | | | [†] Gracias |
| <u>https://</u> § | <u>gitlab.co</u> | <u>m/arm-</u> | <u>research</u> | <u>n/securit</u> | :y/icecap |)/icecap | | | Viitoc |
| | | | | | | | | | |
| | | | | | | | | | 감사압니나 |
| | | | | | | | | | • धन्न्यवाद |
| | | | | | | | | | شکر ً ا |
| | + | | | | | | | | + + + |
| | | | | | | | | | תודה |

© 2020 Arm Limited