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NEWLY REDUCIBLE POLYNOMIAL ITERATES

PETER ILLIG, RAFE JONES, ELI ORVIS, YUKIHIKO SEGAWA, NICK SPINALE

Résumé. Given a field K and n > 1, we say that a polynomial f ∈ K[x] has newly reducible nth
iterate over K if fn−1 is irreducible over K, but fn is not (here f i denotes the ith iterate of f).
We pose the problem of characterizing, for given d, n > 1, fields K such that there exists f ∈ K[x]
of degree d with newly reducible nth iterate, and the similar problem for fields admitting infinitely
many such f . We give results in the cases (d, n) ∈ {(2, 2), (2, 3), (3, 2), (4, 2)} as well as for (d, 2)
when d ≡ 2 mod 4. In particular, we show that for all these (d, n) pairs, there are infinitely many
monic f ∈ Z[x] of degree d with newly reducible nth iterate over Q. Curiously, the minimal
polynomial x2 − x− 1 of the golden ratio is one example of f ∈ Z[x] with newly reducible third
iterate ; very few other examples have small coefficients. Our investigations prompt a number of
conjectures and open questions.

1. Introduction

Although the mathematical study of the golden ratio dates to antiquity, one of its unusual
properties appears to have passed the millennia unnoticed : its minimal polynomial f(x) = x2 −
x− 1 is irreducible over Q, as is the second iterate f(f(x)) of this polynomial, but

(1.1) f(f(f(x))) = (x4 − 3x3 + 4x− 1)(x4 − x3 − 3x2 + x+ 1),

where the two quartics are irreducible. The factorization in (1.1) together with the irreducibility
over Q of f(f(x)) is a rare phenomenon : among polynomials x2 + ax + b with a, b integers
satisfying |a| ≤ 100, 000 and |b| ≤ 1, 000, 000, 000, only 8 others have this property. One might
wonder whether there are infinitely many such polynomials. Indeed there are, as we show in
Theorem 1.3 below.

More generally, let K be a field and f ∈ K[x] a polynomial of degree d ≥ 2. Write fn(x) for
the nth iterate of f . We say that f has a newly reducible nth iterate (over K) for some n ≥ 2
if fn−1 is irreducible over K but fn is not irreducible over K. We note that the irreducibility of
fn−1 implies that each of f, f2, . . . , fn−2 is also irreducible over K. Several recent papers have
given conditions ensuring that all iterates of a polynomial remain irreducible (see e.g. [3], [4], [8],
[10], [11], [12]). Many fewer have studied newly reducible iterates ; a few examples are [6], [9], and
[15]. In this paper our main objects of study are the following.

Definition 1.1. Let d, n be integers that are at least two. Define Nd,n (resp. N∞
d,n) to be the class 1

of all fields K such that there exists at least one (resp. infinitely many) f ∈ K[x] of degree d with
newly reducible nth iterate over K.

When K is a perfect field, the question of whether K ∈ Nd,n can be phrased as an inverse
Galois-type problem : does there exist f ∈ K[x] such that the absolute Galois group of K acts

2010 Mathematics Subject Classification. Primary: 37P15. Secondary: 11R09, 37P05, 37P25.
1. Because the collection of all fields is not a set, neither are Nd,n and N∞

d,n. We use them in this article not as

objects, but as notational devices. In referring to them we use the usual notation and language of set theory.
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transitively on the roots of fn−1 but not on the roots of fn ? Fein and Schacher [9] appear to be
the first to have studied newly reducible iterates, and they used results of Odoni to obtain the
fundamental result in this area : for all d, n ≥ 2, Nd,n is non-empty ([9, Corollary 1.3]). Their
method relies on knowledge of the Galois groups of iterates of generic polynomials, and then
an appeal to the Hilbert irreducibility theorem ; the resulting field K depends on the choice of
specialization. Our aim is to address at least some cases of the following questions, each of which
is unresolved by the methods of [9].

Question 1.2. Let d, n be integers that are at least 2.

(1) Precisely which fields belong to Nd,n and N∞
d,n ?

(2) For which d, n is Q ∈ Nd,n ? For which d, n is Q ∈ N∞
d,n ?

(3) If K is a number field with ring of integers OK and K ∈ N∞
d,n, do there exist infinitely many

monic f ∈ OK [x] of degree d with newly reducible nth iterate over K ?

The case K = Q has received significant attention recently. The recent paper [10] of Goksel
describes an infinite family of monic quadratic f ∈ Z[x] with newly reducible third iterate [10,
Lemma 3.9], thereby showing that Q ∈ N2,3. The paper [15] gives an infinite family of non-monic
cubic f ∈ Z[x] with newly reducible second iterate, thus proving Q ∈ N3,2, and conjectures that
no such family exists among monic cubic f ∈ Z[x] [15, Conjecture 4.1].

We summarize our main results. Throughout the article, we sometimes use char(K) to denote
the characteristic of a field K.

Theorem 1.3. Let K be an infinite field with char(K) 6= 2, and for n ≥ 2 set Kn = {kn : k ∈ K}.
(1) We have K ∈ N2,2 if and only if K 6= K2, and K ∈ N∞

2,2 if and only if K \K2 is infinite
(Proposition 3.2).

(2) We have K ∈ N∞
2,3 if

— −1 6∈ K2 and K has a discrete valuation v with v(5) odd (Proposition 3.6) ; or
— K is a totally real number field and there is a prime of residue degree 1 lying over (3)

(Corollary 3.7).

(3) We have K ∈ N∞
3,2 if char(K) 6= 3 and 2 6∈ K3 (Theorem 5.1).

(4) We have K ∈ N∞
4,2 if char(K) 6= 3, 3 6∈ K2, and −3 6∈ K4 (Corollary 6.3).

(5) We have K ∈ N∞
d,2 for all d ≡ 2 (mod 4) if −1 6∈ K2 and K has a non-trivial discrete

valuation (Corollary 7.2).

In each case, we exhibit an explicit infinite family of polynomials with the desired properties,
and if K is a number field the polynomials may be taken to be monic with coefficients in OK

without loss of generality. For instance, a consequence of Theorem 5.1 is that if

(1.2) f(x) =
(

x+ 93312t9 + 36t3
)3 − 93312t9

for t ∈ Z \ {0}, then f has a newly reducible second iterate over Q. This disproves Conjecture 4.1
of [15], which is based on a search of all polynomials of the form x3 + ax2 + bx+ c, where a, b, c
are integers with absolute value at most 500 ; it is noteworthy that none of the polynomials in
(1.2) are of this form.

When K is a finite field of characteristic not equal to 2, all the statements of Theorem 1.3
hold with N∞

d,n replaced by Nd,n, although (5) and the first statement of (2) become vacuous. We
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have F2 6∈ N2,2, since f(x) = x2 + x + 1 is the only irreducible quadratic over F2, and f2(x) is
irreducible over F2. We prove in Proposition 3.4 that F2n ∈ N2,2 for all n > 1 and F2n ∈ N2,3 for
all n ≥ 1. Surprisingly, F2n 6∈ N2,k for any k ≥ 4 and any n ≥ 1, due to a result of Ahmadi et al
[2, Theorem 10] (see also [1]) that every f ∈ F2n [x] has f

3(x) reducible.
WhenK is a general field of characteristic 2, we know of no results addressing whetherK ∈ Nd,n

for any d, n, though we give a condition that applies to the case d = n = 2 in Proposition 3.3.
This leads us to pose the following question.

Question 1.4. Let p be a prime number and d ≥ p. Which fields of characteristic p belong to
Nd,n for various n ≥ 2 ?

The results of Theorem 1.3 prompt the following two conjectures.

Conjecture 1.5. For each d, n ≥ 2, N∞
d,n is non-empty.

Conjecture 1.6. Let K be a finite extension of Q or Fp(t). Then K ∈ N∞
2,3 and K ∈ N∞

d,2 for
every d ≥ 2.

The proofs of the statements in Theorem 1.3 proceed by enumerating all f of a specified form
such that fn(x) is reducible, and then giving conditions under which infinitely many f remain
after discarding those with fm reducible for m < n. In the case where f is quadratic, the specified
form is f(x) = (x− γ)2 + γ +m, so that γ is the critical point of f , and this includes all f . We
thus obtain the following result.

Theorem 1.7. Let K be a field of characteristic not equal to 2, and let f (x) = (x− γ)2+γ+m ∈
K[x]. Then f has a newly reducible third iterate over K if and only if the following both hold :

(1) There exist r, s ∈ K such that

γ =
1

256r2
(−2r5s2 + 9r4s4 − 4r4s2 − 16r3s6 + 32r3s4 + 16r3s2 + 32r3 + 14r2s8

− 64r2s6 − 8r2s4 + 96r2s2 + 128r2 − 6rs10 + 48rs8 − 64rs6

− 160rs4 + 96rs2 + 128r + s12 − 12s10 + 40s8 − 112s4 − 64s2),

m =
−r2 − 2rs2 − 4r + s4 − 4s2 − 4

8r
.

(2) None of
√−m− γ,

√

−2m+ 2
√

m2 +m+ γ,

√

−2m− 2
√

m2 +m+ γ is in K.

We note that taking K = Q and r = s = 1 in Theorem 1.7 gives γ = 1/2 and m = −7/4. This
yields f(x) = (x− 1/2)2 +1/2− 7/4 = x2−x− 1, and thus we recover the minimal polynomial of
the golden ratio, mentioned in the first paragraph. Observe that for this polynomial, −m−γ = 5/4
and m2 +m+ γ = 29/16, ensuring that condition (2) in Theorem 1.7 holds.

In general, a convenient way to verify the conditions in part (2) of Theorem 1.7 is to show that
neither −m− γ nor m2 +m+ γ is a square in K. With γ,m as in part (1) of Theorem 1.7, up to
squares in K(r, s) we have −m− γ = 2r − s2 + 4 and

m2+m+ γ = −2s2r3+(5s4+4s2+4)r2+(−4s6+12s4+32s2+16)r+ s8− 8s6+8s4+32s2+16

In [10, Lemma 3.9], Goksel studies the case m = −1 and gives algebraic characterizations of
all γ making f2(x) and f3(x) reducible. We recover his results as an outcome of our proof of
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Theorem 1.7 (see the discussion following the proof of Theorem 3.5). We use Theorem 1.7 to give
another family with non-constant m in Theorem 3.7.

We close this introduction with three additional questions, and an outline of the paper.

Question 1.8. Is Q ∈ N2,4 ?

We have not been able to find any quadratic f ∈ Q[x] with newly reducible fourth iterate ; we
briefly discuss some work on this question in Section 4. We remark that [10, Theorem 1.2] shows
that for m ∈ {0,−1,−2} (i.e. when f is post-critically finite), there is no γ ∈ Z that works.

Question 1.9. Does there exist f ∈ Q[x] such that deg f = 3 and f2 is newly reducible with three
distinct factors, each of degree 3 ?

In the course of our study of cubic polynomials in Section 5 we find infinite families with newly
reducible second iterate, but all such families with f ∈ Q[x] have f2(x) that factors as a product
of an irreducible sextic and cubic. It would be interesting to find an f ∈ Q[x] with second iterate
factoring as in Question 1.9. More generally, it would be interesting to study polynomials with
newly reducible iterates that have more than two irreducible factors.

To motivate our last question, we remark that the fields in Nd,n constructed in [9] are number
fields whose degrees grow very rapidly with n and d.

Question 1.10. Fix d ≥ 2, and let mn be the minimal degree of a number field K over which
there is f ∈ K[x] of degree d with newly reducible nth iterate. Is (mn)n≥2 unbounded ? Does
limn→∞mn = ∞ ?

In Section 2, we prove under mild hypotheses that if f has a newly reducible nth iterate, then
the factorization of fn must have a certain form. This generalizes some of the results from [5].
These results are particularly useful in the case where f is quadratic, which we study in Section
3, proving Theorem 1.7 and parts (1) and (2) of Theorem 1.3, as well as some results for fields
of characteristic 2, such as Proposition 3.4. Section 4 contains brief remarks on Question 1.8. In
Section 5, we study cubics with newly reducible second iterate, and prove part (3) of Theorem
1.3. Sections 6 and 7 study polynomials of higher degree with newly reducible second iterate, and
contain the proofs of parts (4) and (5) of Theorem 1.3.

Acknowledgements.We thank the anonymous referee for helpful comments. We are also grateful
to Carleton College’s Towsley Endowment for the Sciences, which partially supported the research
of the third author.

2. The form of factors

We begin with some very general results on factorization of iterates, culminating in Theorem
2.5, which gives a generalization of [5, Proposition 2.6] to arbitrary characteristic. The key lemma,
Lemma 2.3, can be proven using Capelli’s Lemma, as in [5, Proposition 2.6], but we give here a
self-contained proof.

Fix an algebraic closure K and separable closure Ksep of K. Recall that f ∈ K[x] is separable
over K if it has deg f distinct roots in K, or equivalently, all roots of f in K lie in Ksep.

Definition 2.1. Let K be a field and f ∈ K[x] have degree 2n for some n ≥ 1. We say that f
is symmetrically reducible over K if there exists a monic g ∈ K[x] with f(x) = Cg(x)g(−x) for
some C ∈ K.
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Lemma 2.2. Let K be a field, and let f(x) ∈ K[x] have degree d ≥ 2. If fn(x) is newly reducible
for some n ≥ 2, then each irreducible factor of fn(x) has degree divisible by dn−1.

Démonstration. Let α ∈ K be a root of fn(x). Then f(α) ∈ K(α), and so K(f(α)) ⊆ K(α).
Hence

(2.1) [K(α) : K] = [K(α) : K(f(α))][K(f(α)) : K] = dn−1[K(α) : K(f(α))],

where the last equality follows because f(α) is a root of fn−1(x) and fn−1 is assumed to be
irreducible over K. Now let h be any irreducible factor of fn, and α a root of h. Then deg h =
[K(α) : K] is divisible by dn−1 from (2.1). �

Lemma 2.3. Let K be a field and let g, f ∈ K[x] be separable over K. Assume g is irreducible
over K, and let h ∈ K[x] be any non-constant factor of g ◦ f . Consider the map

(2.2) Φ : {roots of h in Ksep} → {roots of g in Ksep}
defined by Φ(α) = f(α). Then Φ is a surjective k-to-1 map for some k with 1 ≤ k ≤ deg f .

Démonstration. First note that a root α of h satisfies g(f(α)) = 0, and so f(α) is indeed a root
of g, showing that Φ is well-defined. Because h is non-constant, the image of Φ is non-empty.

Let GK := Gal (Ksep/K) be the absolute Galois group of K. The key observation is that since
f is defined over K, it must commute with the action of GK on Ksep. Hence if α′ is a root of g
and f(α) = α′, then for any σ ∈ GK we have

(2.3) σ(α′) = σ(f(α)) = f(σ(α)).

Now let α′, β′ be roots of g. Because g is irreducible over K, GK acts transitively on the roots
of g, and hence there is some σ ∈ GK with σ(α′) = β′. From (2.3) we have β′ = f(σ(α)). If we
further assume that α is a root of h, then so must be σ(α), since h is defined over K and hence
the set of its roots is preserved by GK . Therefore σ induces a map Φ−1(α′) → Φ−1(β′). This map
is injective since σ is an injection from the set of all roots of g ◦ f into itself. Similarly, σ−1 gives
an injection Φ−1(β′) → Φ−1(α′). It follows that #Φ−1(α′) = #Φ−1(β′), and thus all fibers of Φ
have equal cardinality. But Φ has non-empty image, and the lemma is proved. �

Lemma 2.4. Let K be a field and f ∈ K[x]. If f is irreducible over K and f ′ is not identically
zero, then all iterates of f are separable over K.

Démonstration. Fix an algebraic closure K of K, and recall the well-known fact that g ∈ K[x] is
separable over K if and only if g and g′ have no common roots in K. We proceed by induction on
n, the number of iterations of f . Let n = 1, and suppose there is α ∈ K with f(α) = f ′(α) = 0.
Because f is irreducible over K, we have [K(α) : K] = deg f . But deg f ′ < deg f , and so f ′(α) = 0
forces f ′ to be identically zero, which is a contradiction.

Assume now that fn is separable over K for some n ≥ 1. The chain rule gives

(2.4) (fn+1)′(x) = (fn)′(f(x)) · f ′(x).

Suppose that α ∈ K satisfies fn+1(α) = (fn+1)′(α) = 0. From (2.4), we have either (fn)′(f(α)) =
0 or f ′(α) = 0. In the former case, we also have 0 = fn+1(α) = fn(f(α)), contradicting the
separability of fn. In the latter case, we also have 0 = fn+1(α) = f(fn(α)), implying that
fn(α) is a root of f with [K(fn(α)) : K] ≤ [K(α) : K] ≤ deg f ′ < deg f . This contradicts the
irreducibility of f . �
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Theorem 2.5. Let K be a field, let f(x) = ax2 + bx+ c ∈ K[x] with a 6= 0, and assume that f ′

is non-zero. If fn(x) is newly reducible over K for some n ≥ 2, then there is a monic irreducible
h ∈ K[x] of degree 2n−1 such that

fn(x) = a2
n−1h(x)h(−(x + (b/a))).

In particular, if K has characteristic not equal to 2, then fn(x + γ) is symmetrically reducible
over K, where γ = −b/2a is the critical point of f .

Démonstration. Assume that fn is newly reducible over K for some n ≥ 2, and observe that by
Lemma 2.2 we have fn(x) = ℓ(fn)h1(x)h2(x), where ℓ(fn) is the leading coefficient of fn, and
h1, h2 ∈ K[x] are monic irreducibles of degree 2n−1. An easy induction shows that ℓ(fn) = a2

n−1.
By Lemma 2.4, both fn−1 and fn are separable over K, and it follows that h1 and h2 are separable
over K as well. By Lemma 2.3, we have that for i = 1, 2 the maps

Φi : {roots of hi in Ksep} → {roots of fn−1 in Ksep}
defined by Φi(α) = f(α), are bijections. Therefore Φ−1

2 ◦Φ1 is a bijection from the roots of h1 to

the roots of h2. Letting α be a root of h1, we have that Φ−1
2 (Φ1(α)) is a root β of h2 satisfying

f(α) = f(β). This gives aα2 + bα = aβ2 + bβ, and because α 6= β we further deduce β = −α− b
a .

Now let α1, . . . , α2n−1 be the roots of h1 in Ksep and β1, . . . , β2n−1 be the roots of h2 in Ksep.
We have

h2(x) =

2n−1

∏

i=1

(x− βi) =

2n−1

∏

i=1

(x− (−αi − (b/a))) =

2n−1

∏

i=1

((x+ (b/a)) + αi).

Because n ≥ 1, this last expression is the same as
∏2n−1

i=1 (−(x+ b
a)− αi), which is h1(−(x+ b

a)).

If K has characteristic not equal to 2, then from fn(x) = ℓ(fn)h1(x)h1(−(x + b
a)) we have

fn(x − b
2a) = ℓ(fn)h1(x − b

2a)h1(−(x + b
2a)), whence fn(x − b

2a) = ℓ(fn)g(x)g(−x) for g(x) =

h1(x− b
2a). Thus f

n(x− b
2a) is symmetrically reducible over K. �

3. Quadratic polynomials with newly reducible second and third iterate

A monic quadratic polynomial in K[x] has the form x2+ax+ b, but when K has characteristic
not equal to 2 we may write it as (x − γ)2 + m + γ with γ = −a/2 and m = b + a/2 − a2/4.
This latter form emphasizes the critical point γ of f , and behaves more simply with respect to
iteration. In this section, we prove Theorem 1.7 and give some results in the case where K has
characteristic 2.

To prove Theorem 1.7, it is enough, in light of Theorem 2.5, to characterize quadratic polyno-
mials with symmetrically reducible third iterate, and then discard those with a reducible first or
second iterate. Clearly f(x) is reducible over K if and only if

√−m− γ is in K.
We begin by giving a criterion for when f2(x+ γ) has symmetrically reducible second iterate.

Lemma 3.1. Let K be a field of characteristic not equal to 2, and let f (x) = (x− γ)2 + γ +m
for γ,m ∈ K. Then f2 (x+ γ) is symmetrically reducible over K if and only if at least one of

√

−2m± 2
√

m2 +m+ γ

is in K.
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Démonstration. We have

f2 (x) = (x− γ)4 + 2m (x− γ)2 +m2 +m+ γ.

On the other hand, by definition f2 (x+ γ) is symmetrically reducible over K if and only if
f2 (x+ γ) = (x2 + cx+ d)(x2 − cx+ d) for some c, d ∈ K. Equating coefficients gives

m2 +m+ γ = d2(3.1)

2m = 2d− c2(3.2)

Clearly (3.1) has a solution d ∈ K if and only if
√

m2 +m+ γ ∈ K. Substituting d = ±
√

m2 +m+ γ
into (3.2), we see that

c = ±
√

−2m± 2
√

m2 +m+ γ.

If one of these choices of c lies inK, then so does the corresponding choice of d, and hence f2 (x+ γ)

is symmetrically reducible over K. On the other hand, if neither of

√

−2m± 2
√

m2 +m+ γ is

in K, then there is no c ∈ K satisfying (3.2), and hence f2(x+ γ) is not symmetrically reducible
over K. �

Proposition 3.2. Let K be a field of characteristic not equal to 2, and let K2 = {k2 : k ∈ K}.
Then K ∈ N2,2 (resp. K ∈ N∞

2,2) if and only if K 6= K2 (resp. K \K2 is infinite).

Démonstration. Equations (3.1) and (3.2) imply that for any a, b ∈ K we can construct f with
symmetrically reducible second iterate, simply by taking m = a − 1

2b
2 and γ = a2 − m2 − m.

Taking b = 2 yields the family f(x) = (x− (3a− 2))2 + 4a− 4 for a ∈ K, for which we have

f2(x) =
(

x2 + (−6a+ 2)x+ 9a2 − 5a
) (

x2 + (−6a+ 6)x+ 9a2 − 17a+ 8
)

.

Thus f has newly reducible second iterate provided f(x) is irreducible over K, and because K
has characteristic not equal to 2, this is equivalent to 1−a 6∈ K2. Because x 7→ 1−x is a bijection
on K, it follows that K ∈ N2,2 (resp. K ∈ N∞

2,2) if K 6= K2 (resp. K \ K2 is infinite). The

converse follows from the observation that K = K2 implies that no quadratic polynomial over K
is irreducible, and K \K2 finite implies that only finitely many quadratic polynomials over K are
irreducible. �

When K has characteristic 2, the corresponding result to Lemma 3.1 is more complicated.

Lemma 3.3. Let K be a field of characteristic 2, and let f(x) = x2 + ax + b. Then f2(x) =
h(x)h(x + a) for some h ∈ K[x] if and only if b = 0, b = a+ 1, or

(3.3) x4 + a2x3 + a3x2 + a2(b2 + ab+ b)x+ (b2 + ab+ b)2

has a root in K.

Démonstration. We have f2(x) = x4+(a2+a)x2+a2x+(b2+ab+ b). Letting h(x) = x2+ cx+ d
and equating coefficients in f2(x) = h(x)h(x + a) gives

a2 + ac+ c2 = a2 + a

a2c+ ac2 = a2

a2d+ acd+ d2 = b2 + ab+ b
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The first equation gives ac+c2+a = 0, which renders the second equation redundant. Multiplying
through by a2d2 gives a2d(acd) + (acd)2 + a3d2 = 0. From the third equation we have acd =
a2d+ d2 + b2 + ab+ b, and substitution yields

a2d(a2d+ d2 + b2 + ab+ b) + (a2d+ d2 + b2 + ab+ b)2 + a3d2 = 0.

Expanding, simplifying, and writing this as a polynomial in d yields

d4 + a2d3 + a3d2 + (a3b+ a2b2 + a2b)d+ a2b2 + b4 + b2 = 0,

which is equivalent to x4+a2x3+a3x2+a2(b2+ab+b)x+(b2+ab+b)2 having a root in K. When
such a root exists, we may solve for c provided that a 6= 0 and d 6= 0. But a = 0 forces c = 0, and
so we obtain c anyway. If d = 0, then we get b2 + ab+ b = 0, and so b = 0 or b = a+ 1. �

Remark. It follows from Theorem 2.5 and Lemma 3.3 that f(x) has a newly reducible second
iterate over K if and only if f is irreducible and the polynomial in (3.3) has a root in K. This is
because if b = 0 then f(0) = 0, and if b = a + 1 then f(1) = 0, and thus f is reducible in both
cases.

We now turn to finite fields of characteristic 2. In particular, one might ask which of the fields
F2n belong to N2,k for various k ≥ 2 ? When k ≥ 4, this question has been settled by Ahmadi
et al [2, Theorem 10] (see also [1]), and the answer is surprising : none of them. The result [2,
Theorem 10] gives that if f ∈ F2n [x] is quadratic, then f3(x) is reducible over F2n .

As for N2,2 and N2,3, observe that F2 6∈ N2,2, since the unique irreducible quadratic polynomial
f(x) = x2 + x + 1 ∈ F2[x] has f2(x) irreducible. By adapting the methods of [1], we show the
following.

Proposition 3.4. Let K = F2n . Then K ∈ N2,2 for all n ≥ 2 and K ∈ N2,3 for all n ≥ 1.

Démonstration. Let K = F2n , and f(x) = x2 + ax+ b ∈ K[x], and denote the trace map K → F2

by TrK/F2
. By a standard result in field theory [14, Corollary 3.6], we have that f is irreducible

over K if and only if a 6= 0 and TrK/F2
(b/a2) = 1. Assume that this holds. Then by Capelli’s

Lemma ([1, 7]), f2(x) is reducible over K if and only if f(x) − α is reducible over K(α), where
f(α) = 0. Applying [14, Corollary 3.6] again, this is equivalent to TrK(α)/F2

((b − α)/a2) = 0.
Properties of the trace now give

TrK(α)/F2
((b− α)/a2) = TrK(α)/F2

(b/a2)−TrK(α)/F2
(α/a2)

= 2TrK/F2
(b/a2) + TrK/F2

(TrK(α)/K(α/a2))

= TrK/F2
(a/a2).

To show that K ∈ N2,2, we thus seek a, b ∈ K with a 6= 0, TrK/F2
(b/a2) = 1, and TrK/F2

(1/a) = 0.
If there are r, s ∈ K with r 6= 0, TrK/F2

(r) = 0, and TrK/F2
(s) = 1, then we can take a = 1/r and

b = s/r2. Now because K is a separable extension of F2, the bilinear form (x, y) = TrK/F2
(xy)

is non-degenerate, and taking y = 1 gives that TrK/F2
is a surjective homomorphism from the

additive group of K to the additive group of F2. Therefore we can find the desired r, s provided
that |K| > 2.

To show that K ∈ N2,3, we seek a, b ∈ K with a 6= 0 and TrK/F2
(b/a2) = TrK/F2

(1/a) = 1.

This ensures that f2(x) is irreducible over K, and then by [2, Theorem 10] we have that f3(x) is
reducible over K. If we find r ∈ K with r 6= 0 and TrK/F2

(r) = 1, then we may take a = b = 1/r.

Because TrK/F2
: K+ → F+

2 is a surjective homomorphism, the desired r must exist. �



NEWLY REDUCIBLE POLYNOMIAL ITERATES 9

The techniques of Proposition 3.4 and [2, Theorem 10] do not apply to general fields of charac-
teristic 2, and it remains an open question which of them belong to N2,2 and N2,3. See Question
1.4.

We now give a characterization of quadratic polynomials f(x) such that f3 (x+ γ) is symme-
trically reducible.

Theorem 3.5. Let K be a field of characteristic not equal to 2, and let f (x) = (x− γ)2+γ+m ∈
K[x]. Then f3 (x+ γ) is symmetrically reducible over K if and only if γ = −m or there exist
r, s ∈ K such that

γ =
1

256r2
(

−2r5s2 + 9r4s4 − 4r4s2 − 16r3s6 + 32r3s4 + 16r3s2 + 32r3 + 14r2s8(3.4)

− 64r2s6 − 8r2s4 + 96r2s2 + 128r2 − 6rs10 + 48rs8 − 64rs6

−160rs4 + 96rs2 + 128r + s12 − 12s10 + 40s8 − 112s4 − 64s2
)

m =
−r2 − 2rs2 − 4r + s4 − 4s2 − 4

8r
(3.5)

Démonstration. First, if γ = −m then f3(x+γ) =
(

x4 − 2γx2 + γ2 − γ
)2
, so f3(x+γ) is symme-

trically reducible. Otherwise, suppose that there exist r, s ∈ K that satisfy (3.4) and (3.5). Note
that r 6= 0. Then we compute f3 (x+ γ) and substitute the expressions in r and s for γ and m.
This gives

f3 (x+ γ) =
h (x)

64r2
· h (−x)

64r2
,

where

h (x) = 64r2x4 − 64r2sx3 +
(

−16r3 − 64r2 + 16rs4 − 64rs2 − 64r
)

x2

+
(

24r3s+ 64r2s− 8rs5 + 32rs3 + 32rs
)

x+
(

r4 − 12r3s2 + 10r2s4

−24r2s2 − 8r2 − 4rs6 + 16rs4 + 16rs2 + s8 − 8s6 + 8s4 + 32s2 + 16
)

.

Therefore, f3 (x+ γ) is symmetrically reducible.
Conversely, suppose that f3 (x+ γ) is symmetrically reducible. Our goal is to show either that

γ = −m or that (3.4) and (3.5) hold for some r, s ∈ K. We have

f3 (x+ γ) = x8 + 4mx6 +
(

6m2 + 2m
)

x4 +
(

4m3 + 4m2
)

x2 + (m4 + 2m3 +m2 +m+ γ).

Since f3 (x+ γ) is symmetrically reducible, by definition there exist h1, h2 ∈ K[x] such that

h1 (x+ γ) = x4 + dx3 + cx2 + bx+ a,

h2 (x+ γ) = x4 − dx3 + cx2 − bx+ a,

and f3 (x+ γ) = h1 (x+ γ) h2 (x+ γ). Equating coefficients gives

γ +m4 + 2m3 +m2 +m = a2(3.6)

4m3 + 4m2 = 2ac− b2(3.7)

6m2 + 2m = 2a− 2bd+ c2(3.8)

4m = 2c− d2(3.9)
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First, we solve (3.8) for a and substitute the resulting value into the other equations. We then
solve (3.9) for c, and substitute the resulting value into the other equations. This gives

γ +m4 + 2m3 +m2 +m =
1

64

(

64b2d2 − 16bd5 − 128bd3m+ 128bdm2 + 128bdm+ d8 + 16d6m

+48d4m2 − 16d4m− 128d2m3 − 128d2m2 + 64m4 + 128m3 + 64m2
)

(3.10)

4
(

m3 +m2
)

=
1

8

(

−8b2 + 8bd3 + 32bdm− d6 − 12d4m− 24d2m2 + 8d2m+ 32m3 + 32m2
)

(3.11)

Next we solve (3.11) for b, giving

b =
1

4

(

2d3 + 8dm± dβ
)

where β =
√

2d4 + 8d2m+ 16m2 + 16m.(3.12)

Finally, substituting (3.12) into (3.10) and solving for γ gives

(3.13) γ = ±βA+
17

64
d8 +

5

4
md6 +

11

4
m2d4 +

7

4
md4 + 2m3d2 + 2m2d2 −m,

where

A =
1

16
d2

(

3d4 + 8d2m+ 8m2 + 8m
)

.

Since b ∈ K, (3.12) shows that d = 0 or β ∈ K. If d = 0, then (3.13) gives γ = −m and we’re
done. Otherwise, β ∈ K. Then (3.12) gives a K-rational point on the surface

S : y2 = 2s4 + 8s2m+ 16m2 + 16m.(3.14)

For fixed s, this equation is a conic in y and m, and we can use rational projection to parametrize
its K-rational points. The homogeneous form of S can be written

S : Y 2 = 16M2 +
(

8s2 + 16
)

MZ + 2s4Z2.

Note that the rational point P = [M : Y : Z] = [1 : 4 : 0] ∈ P2(K) is on S ; this is the point
we will project through. Let r0 ∈ K be arbitrary. The affine part of the line through r0 and P is
given by y = 4m + r0. To solve for the other intersection point, we substitute into (3.14) to get

(4m+ r0)
2 = 16m2 +

(

8s2 + 16
)

m+ 2s4. This equation is linear in m, and we get

m =
2s4 − r20

8 (r0 − s2 − 2)
.

Note that r0−s2−2 = 0 corresponds to the line intersecting the point at infinity with multiplicity
2, so with this projection we don’t miss any affine rational points. Taking r = r0 − s2 − 2 now
gives

m = m (r, s) =
2s4 − r2 − 2rs2 − 4r − s4 − 4s2 − 4

8r

This is (3.5), so we’re halfway done. Since we have y = 4m+ r0 = 4m+ r + s2 + 2,

y = y (r, s) =
r2 + s4 − 4s2 − 4

2r

Recall that y = β and s = d. Using these in (3.13),

γ = ±yA+
17

64
s8 +

5

4
ms6 +

11

4
m2s4 +

7

4
ms4 + 2m3s2 + 2m2s2 −m.
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If the plus sign satisfies this equation, it simplifies to

γ = γ (r, s) =
1

256r2
(

−2r5s2 + 9r4s4 − 4r4s2 − 16r3s6 + 32r3s4 + 16r3s2 + 32r3 + 14r2s8

− 64r2s6 − 8r2s4 + 96r2s2 + 128r2 − 6rs10 + 48rs8 − 64rs6

−160rs4 + 96rs2 + 128r + s12 − 12s10 + 40s8 − 112s4 − 64s2
)

.

This is (3.4). On the other hand, if we must choose the minus sign, let

r′ =
−s4 + 4s2 + 4

r
s′ = s

Plugging these in, m (r′, s′) = m (r, s) and y (r′, s′) = −y (r, s). So in this case, (3.4) is satisfied
by r′ and s′. �

We make a few observations about Theorem 3.5 and its proof. First, Theorem 1.7 is now proved,
as a consequence of Theorem 2.5 and Theorems 3.1 and 3.5. Second, whenever γ = −m, we have
f(x) = (x − γ)2, which is obviously reducible. Therefore, Theorem 3.5 shows that all f(x) with
newly reducible third iterate have m,γ such that (3.4) and (3.5) are satisfied by some r, s ∈ K.

Third, we emphasize that K-rational points on the surface S described in (3.14) play a crucial
role in determining the existence of quadratic polynomials over K with newly reducible third
iterate. The fibers of the map S → A1 given by projection onto the m-coordinate are particularly
interesting, and worth dwelling on for a moment. In general, these fibers are elliptic curves, unless
m divides the discriminant of 2s4 +8s2m+16m2+16m considered as a polynomial in s. Observe
that

Disc(2s4 + 8s2m+ 16m2 + 16m) = 221m3(m+ 2)2(m+ 1).

Hence we obtain a curve of genus zero if and only if m ∈ {0,−1,−2}. We remark that for each of
these m-values, f(x) = (x − γ)2 + γ +m is post-critically finite – that is, the forward orbit of γ
is finite – and indeed these are the only such m-values for K = Q.

When m = 0, we have that S degenerates to y2 = 2s4, which has no K-rational points unless√
2 ∈ K. Hence if

√
2 6∈ K, then f(x) = (x− γ)2 + γ has f3(x+ γ) symmetrically reducible only

if γ = −m, which implies that f(x) is reducible. If
√
2 ∈ K, then equations (3.6) - (3.9) yield

γ = d8
(

17
64 ± 3

√
2

16

)

, and it follows that

√

2
√
γ =

d2

2
(1 +

√
2) ∈ K.

By Lemma 3.1 this shows that f2(x) is reducible over K. This is in line with [10, Theorem 1.2(i)
and Remark 4.3], which give that when K = Q and m = 0, either f2(x) is reducible over K, or
all iterates of f are irreducible over K.

When m = −2, S degenerates to y2 = 2(s2 − 2)2, and again one finds that f3(x + γ) is
symmetrically reducible if and only if either f(x) or f2(x) is reducible.

When m = −1, matters are different, and the following proposition shows we obtain an infinite
family of polynomials with newly reducible third iterate for certain K.
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Proposition 3.6. Let K be a field of characteristic not equal to 2, and let f(x) = (x−γ)2+γ−1.
Then f3(x+ γ) is symmetrically reducible if and only if

(3.15) γ = 4

(

(t2 − 8t+ 8)(t2 + 8)

(t2 − 8)2

)4

+ 1 for some t ∈ K.

Suppose moreover that K is a field with a non-trivial discrete valuation v such that v(5) is odd,
and that −1 is not a square in K. Then f3(x) is newly reducible over K whenever t = 25r in
(3.15), for any r ∈ K with v(r) ≥ 0. In particular, K ∈ N∞

2,3.

Démonstration. When m = −1, S degenerates to y2 = 2s2(s2 − 4), whose solutions are given by

s = −2 t2+8
t2−8 where t is any element of K. In the notation of the proof of Theorem 3.5 we have

s = d, and we now use equations (3.6) - (3.9) to find (3.15).
Observe that for m = −1 we have −m − γ = 1 − γ, and from (3.15) this is not a square in

K because −1 is not a square in K. We also have m2 +m + γ = γ, and so if γ is not a square
in K, then Lemma 3.1 gives that f2(x) is irreducible over K. Now from (3.15) we have that the
numerator of γ as a function of t has constant term c = 5 · 88. Let v : K∗ → Z be a normalized
discrete valuation with v(5) odd. Then v(c) = v(5) + 8v(8), and so v(c) is odd. Taking t = 25r
with v(r) ≥ 0 then shows v(γ) is odd, and hence γ cannot be a square in K. �

Remark. Proposition 3.6 shows that if K is a number field with ring of integers OK , −1 is not a
square in K, and the ideal (5) is not the square of an ideal in OK , then K ∈ N∞

2,3. In particular,
Q ∈ N∞

2,3.

The family appearing in Proposition 3.6 is the same family that appears in Lemma 3.9 of [10],
though there it is stated only for integer parameters.

In the preceding discussion, we took m to be constant. It is of interest to give another infinite
family with non-constant m-values, which we do in the following corollary to Theorem 3.5.

Corollary 3.7. Let K be a totally real number field and suppose there is a prime p of OK lying
over the ideal (3) with residue degree 1. Let f(x) = (x− γ)2 + γ +m, where

m = −1− 2k2 + k4,

γ = 1 + k2
(

−2 + k2
) (

−1− 4k2 + 2k4
) (

1− 4k2 + 2k4
)

for k ∈ OK . If |k| >
√
2 and p ∤ (k), then f3(x) has a newly reducible third iterate over K. In

particular, K ∈ N∞
2,3.

Démonstration. Let r = 2 and s = 2k in Theorem 3.5, and observe that it’s sufficient to show that

neither of −m− γ and m2 +m+ γ is a square in K. One calculates −m− γ = −4k6
(

−2 + k2
)3
.

Because |k| >
√
2, we have −m− γ < 0, and since K is totally real, we have that −m− γ is not

a square in K. We also have

m2 +m+ γ =
(

−1 + k2
)2 (

1 + 6k2 + 13k4 − 16k6 + 4k8
)

Observe that because p has residue degree 1, we have OK/p ∼= Z/3Z. Because p ∤ (k) we conclude
k2 ≡ 1 (mod p), whence

1 + 6k2 + 13k4 − 16k6 + 4k8 ≡ 2 (mod p),

proving that m2 +m+ γ is not a square in OK , and hence not a square in K. �

Note that many other infinite families exist ; for instance, there is a similar one with r = −2.
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4. Rational Quadratics with newly reducible fourth iterate

In this section we briefly examine the following question.

Question 4.1. Does there exist f ∈ Q[x] of degree 2 with newly reducible fourth iterate ?

Theorem 2.5 tells us that if f(x) = (x− γ)2 +m+ γ has a newly reducible fourth iterate, then
f4(x+ γ) is symmetrically reducible. That is, f4(x+ γ) = h(x)h(−x), where

h(x) = x8 + a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0

Equating coefficients gives the following system of equations :

γ +m8 + 4m7 + 6m6 + 6m5 + 5m4 + 2m3 +m2 +m = a20

8m7 + 24m6 + 24m5 + 16m4 + 8m3 = 2a0a2 − a21

28m6 + 60m5 + 36m4 + 16m3 + 4m2 = a22 − 2a1a3 + 2a0a4

56m5 + 80m4 + 24m3 + 8m2 = −a23 + 2a2a4 − 2a1a5 + 2a0a6

70m4 + 60m3 + 6m2 + 2m = a24 + 2a0 − 2a3a5 + 2a2a6 − 2a1a7

56m3 + 24m2 = −a25 + 2a2 + 2a4a6 − 2a3a7

28m2 + 4m = a26 + 2a4 − 2a5a7

8m = 2a6 − a27

This defines a surface, which we denote S4, whose rational points correspond to quadratic f(x) ∈
Q[x] such that f4(x+ γ) is symmetrically reducible over Q. In particular, this includes all monic
quadratic f(x) with newly reducible fourth iterate over Q. At present, obtaining any information
about the rational points on S4 seems to be quite difficult.

It is interesting to consider the fibers of the map π : S4 7→ A1 given by projection onto the
m-coordinate. In general these fibers appear to be very high-genus curves, though it is possible
that some particular fibers are sufficiently singular that the genus drops significantly. This was
the case for the fibers m ∈ {0,−1,−2} for the similar projection map of the curve S in (3.14) that
arose from studying f with symmetrically reducible third iterate. Similarly, the fibers π−1(0) and
π−1(−2) are likely to have smaller genera than other fibers ; unfortunately, their rational points
cannot lead to f(x) ∈ Q[x] with newly reducible fourth iterate (see [10, Theorem 4.1 and Remark
4.3]).

The fiber π−1(−1), on the other hand, remains a possible location for rational points on S4.
Lemma 3.10 of [10] shows that integer values of γ cannot lead to rational points on this fiber, but
the case of non-integer γ ∈ Q remains open (see Remark 4.3 of [10]).

5. Cubics with newly reducible second iterate

In this section we study the question of whether there exist monic irreducible cubic polynomials
in K[x] with newly reducible second iterate. Observe that if K does not have characteristic 3, then
f(x) = x3+c2x

2+c1x+c0 can be conjugated to a cubic with no quadratic term : taking γ = −c2/3,
a = c1 − (c22/3) + (c2/3), and b = c0 − (c32/27) − (c2/3) gives f(x) = (x− γ)3 + a(x− γ) + b+ γ,
or equivalently

(5.1) f(x+ γ) = x3 + ax+ b+ γ ∈ K[x]
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We emphasize that, unlike in the quadratic case, γ is not a critical point for f except in the special
case that a = 0. It is this special case that is the source of our main result on newly reducible
cubics :

Theorem 5.1. Let K be a field of characteristic not equal to 2 or 3, and assume that 2 is not
the cube of an element of K. If f(x) = (x− γ)3 + b+ γ, with

b = 36t3 and γ = (−2 · 66)t9 − 36t3, or(5.2)

b = −9t3 and γ = 9t3 + (2 · 36)t9(5.3)

for some non-zero t ∈ K, then f has a newly reducible second iterate.

Démonstration. From Lemma 2.2, we have that if f2(x) is newly reducible, then f2(x) = p1(x)p2(x),
where deg p1(x) = 3, deg p2(x) = 6, and p1(x) is irreducible. Write

f2(x+ γ) = (x3 + a2x
2 + a1x+ a0)(x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0),

and equate coefficients to get the system of equations

b+ b3 + γ = a0b0

0 = a0b1 + a1b0

0 = a0b2 + a1b1 + a2b0

3b2 = a0b3 + a1b2 + a2b1 + b0

0 = a0b4 + a1b3 + a2b2 + b1

0 = a0b5 + a1b4 + a2b3 + b2

3b = a0 + a1b5 + a2b4 + b3

0 = a1 + a2b5 + b4

0 = a2 + b5

We may solve for b5, b4, b3, b2, b1, and b0 to obtain

b+ b3 + γ = a30 − a0a
3
1 − 6a20a1a2 + 6a0a

2
1a

2
2 + 4a20a

3
2 − 5a0a1a

4
2 + a0a

6
2(5.4)

− 3a20b+ 6a0a1a2b− 3a0a
3
2b+ 3a0b

2

0 = 3a20a1 − a41 − 9a0a
2
1a2 − 3a20a

2
2 + 6a31a

2
2 + 8a0a1a

3
2 − 5a21a

4
2(5.5)

− a0a
5
2 + a1a

6
2 − 6a0a1b+ 6a21a2b+ 3a0a

2
2b

− 3a1a
3
2b+ 3a1b

2

0 = 3a0a
2
1 + 3a20a2 − 4a31a2 − 12a0a1a

2
2 + 10a21a

3
2 + 5a0a

4
2 − 6a1a

5
2 + a72(5.6)

− 3a21b− 6a0a2b+ 9a1a
2
2b− 3a42b+ 3a2b

2

Note that (5.5) is quadratic in a0. Taking the discriminant of this equation in a0 gives

(5.7) 9a42b
2+

(

36a31a2 − 42a21a
3
2 + 24a1a

5
2 − 6a72

)

b+12a51−3a41a
2
2−12a31a

4
2+10a21a

6
2−4a1a

8
2+a102 ,

which in turn is quadratic in b. The discriminant of this equation in b is

− 144
(

−9a61a
2
2 + 24a51a

4
2 − 25a41a

6
2 + 14a31a

8
2 − 5a21a

10
2 + a1a

12
2

)

,

which has the semi-miraculous factorization

(5.8) 12
(

a1a
2
2

(

a1 − a22
) (

9a41 − 15a31a
2
2 + 10a21a

4
2 − 4a1a

6
2 + a82

))

.
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Selecting a1 and a2 so that (5.8) vanishes forces (5.7) to be a square, which gives a K-rational
solution to (5.5).

One such choice is a1 = 0, which reduces (5.5) to 0 = −3a20a
2
2 − a0a

5
2 +3a0a

2
2b, giving a0 = 0 or

a0 = −a32/3 + b. The former is impossible, since a0 = 0 would imply that the degree three factor
of our second iterate was reducible. Substituting a0 = −a32/3 + b into (5.6) produces another

semi-miracle, as the b2 terms cancel, giving b = a32/6. Then (5.4) gives γ =
−a9

2

108 − a3
2

6 . Observe

that b+ γ = −a92/108, and it follows from Proposition 6.1 that f(x) is irreducible over K if and
only if a92/108 is not a cube in K. But this is equivalent to 2 not being a cube in K, which is
true by assumption. Hence f has newly reducible second iterate over K. Taking a2 = 6t clears
denominators and gives the family in (5.2).

Taking a1 = a22 also causes (5.8) to vanish, and reduces (5.5) to

0 = −2a0a
5
2 + a82 − 3a0a

2
2b+ 3a52b+ 3a22b

2,

giving a0 =
a8
2
+3a5

2
b+3a2

2
b2

2a5
2
+3a2

2
b

. Substituting this into (5.6) yields a cubic rational function in b whose

numerator fortuitously has a factor of a32+3b, together with an irreducible quadratic in b. Taking
b = −a32/3 and substituting this into (5.4) yields γ = 1

27(9a
3
2 + 2a92). Then b + γ = 2

27a
3
2, and

we have that f is irreducible over K since −2 is not a cube in K, as in the previous paragraph.
Taking a2 = 3t gives the family in (5.3). �

Remark. We can also force (5.8) to vanish by taking a2 = 0, but this produces a family of
polynomials f that are all reducible.

We obtain the following immediate corollary of Theorem 5.1.

Corollary 5.2. If K is an infinite field satisfying the hypotheses of Theorem 5.1, then K ∈ N∞
3,2.

In particular, if K is a number field with ring of integers OK and 2 is not the cube of an element
of K, then there are infinitely many monic f ∈ OK [x] with newly reducible second iterate over K.

We end this section by briefly addressing Question 1.9, which asks whether there exists f ∈ Q[x]
with f irreducible but f2(x) a product of three irreducible cubics. The following proposition
addresses this.

Proposition 5.3. Let f(x) ∈ Q[x] have the form in (5.1), and assume that f2 is newly reducible
with three distinct factors p1(x), p2(x), and p3(x). If β is a root of p1(x+ γ), and f(β + γ) = α,
then

(5.9)
−β ±

√

−3β2 − 4a

2

are roots of p2(x+ γ) and p3(x+ γ) whose images under f(x+ γ) are α.

Démonstration. Observe that each of the factors of f2(x) must have degree 3. By Lemma 2.3, the
map

Φi : {roots of pi(x+ γ) in Q} → {roots of f(x+ γ) in Q}
is surjective and k-to-one for each factor pi of f

2. Since each factor has degree equal to the degree
of f , Φi is one-to-one for each i, and there is one root of each pi whose image under Φi is α.
We will show that the roots of p2(x + γ) and p3(x + γ) satisfying this condition are given by
(5.9). Let β2 be such a root, and observe that β3 + a(β) + b+ γ = β3

2 + a(β2) + b+ γ. This gives
a quadratic equation for β2 in terms of β, to which we apply the quadratic formula to obtain

β2 =
−β±

√
−3β2−4a
2 . �
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Notice that when a = 0, we have that the three preimages of a given root of f(x) differ by a
multiple of a cubic root of unity. As a consequence, the constant terms of our three factors are
equal. We can equate coefficients using this fact to show that there is no monic cubic over Q[x]
with a = 0 whose second iterate factors as three irreducible cubics.

6. Quartics with newly reducible second iterate

In this section we will find infinitely many rational quartic polynomials with newly reducible
second iterate. We use the following standard fact from field theory to tell when f(x) is irreducible,
noting that Kn refers to the set {kn : k ∈ K}.
Proposition 6.1. [13, Theorem 8.1.6] Let K be a field and f(x) = xd− c ∈ K[x] for d ≥ 1. Then
f(x) is irreducible over K if and only if c 6∈ Kp for all primes p | d and c 6∈ −4K4 whenever 4 | d.

Throughout this section, we only consider polynomials of the form f(x) = (x − γ)4 +m + γ,
where m,γ ∈ Q. It turns out that even in this subset of rational quartics, there are infinitely
many with newly reducible second iterate.

Theorem 6.2. Let K be a field of characteristic not equal to 2, and suppose that f(x) = (x −
γ)4+m+γ ∈ K[x] is irreducible over K. Then f2(x+γ) factors as p(x2)p(−x2) for some p ∈ K[x]

if and only if there exist r, s ∈ K with r 6= s2 such that m = 2s4−r2

8r−8s2
and

γ =
−2r5s2 + 19r4s4 − 72r3s6 + 32r3 + 136r2s8 − 32r2s2 − 128rs10 − 64rs4 + 48s12 + 64s6

256 (r − s2)2
.

Démonstration. First, suppose that m,γ, r, s ∈ K are as in the theorem. Writing r1 = r− s2, one
computes that f2(x+ γ) = p(x2)p(−x2), where

p(x) = x4 − sx3 +
s4 − r21
4r1

x2 +
3r21s− s5

8r1
x+

−4r1s
6 + 10r21s

4 − 12r31s
2 + r41 + s8

64r21
.

Conversely, suppose that f(x+ γ) = p(x2)p(−x2) for p(x) = x4 + dx3 + cx2 + bx+ a. Equating
coefficients gives us the following system of equations.

a2 = γ +m4 +m(6.1)

2ac− b2 = 4m3(6.2)

2a− 2bd+ c2 = 6m2(6.3)

2c− d2 = 4m(6.4)

First we solve (6.4) for c and substitute this into the other equations. Then we do the same with
(6.3) and b, and then with (6.2) and a. This leaves us with equation (6.1), which becomes

1

64

(

3d4 + 8d2m± 2
√
2d2

√

d4 + 4d2m+ 8m2 + 8m2
)2

= γ +m4 +m(6.5)

Note that if d = 0, this equation becomes m4 = γ+m4+m, so γ+m = 0. But then f(x+γ) = x4

is reducible, which is a contradiction. So d 6= 0, and therefore
√

2(d4 + 4d2m+ 8m2) ∈ K. In
other words, there is a K-rational solution to

S : y2 = 16m2 + 8s2m+ 2s4
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where s = d. Considering s as a fixed parameter, this is a conic. Now we want to parametrize the
K-rational points on S, so we use the homogeneous form of S,

S : Y 2 = 16M2 + 8s2MZ + 2s4Z2,

and project through the point at infinity [M : Y : Z] = [1 : 4 : 0]. We parametrize our projection
line by where it crosses the line m = 0. Then each line is given by y = 4m+ r, where r ∈ Q. Then
we solve for the intersection point of this line and S, giving

m = m(r, s) =
2s4 − r2

8r − 8s2
and y = y(r, s) = 4m+ r =

2s4 − r2

2r − 2s2
− r.

Then we solve (6.5) for γ. This gives

γ =
1

64

(

3s4 + 8s2m+ 8m2 ± 2s2y
)2 −m−m4.

Note that there is a plus or minus in front of the term containing y. The plus sign leads to

γ =
−2r5s2 + 19r4s4 − 72r3s6 + 32r3 + 136r2s8 − 32r2s2 − 128rs10 − 64rs4 + 48s12 + 64s6

256 (r − s2)2
,

as in the statement of the theorem. On the other hand, if we have the minus sign, let r′ =
s2(2s2−r)

s2−r

and s′ = s. Plugging these in gives m(r′, s′) = m(r, s) and y(r′, s′) = −y(r, s), again giving γ as
in the statement of the theorem. �

Corollary 6.3. Let K be a field of characteristic not in {2, 3}, and such that 3 is not the square
of an element of K, and −3 is not the fourth power of an element of K. Then

f(x) =
(

x+ 192t8 − 7t2
)4 − 192t8

has a newly reducible second iterate over K for any t ∈ K, t 6= 0.

Démonstration. Let t ∈ K with t 6= 0, and in the notation of Theorem 6.2 take r = 48t2 and
s = 4t. Then from Theorem 6.2 we have that f(x) = (x−γ)4+γ+m has f2(x) reducible over K,
where γ = −192t8 + 7t2 and m = −7t2. We now argue that f(x) is irreducible over K. Observe
that

−m− γ = 192t8 = (26 · 3)t8
If −m− γ = k2 for k ∈ K, then 3 is a square in K, while if 4(m+ γ) = k4 for k ∈ K, then −3 is
a fourth power in K. Proposition 6.1 now shows that f is irreducible over K. �

7. Higher-degree polynomials with newly reducible second iterate

Theorem 7.1. Let d ≡ 2 (mod 4), let p1, . . . , pr be the distinct odd primes dividing d, let K be
a field, and put Kn = {kn : k ∈ K}. Assume that −1 6∈ K2 and −4k4 6∈ Kpi for each i = 1, . . . , r.

Then the polynomial f(x) =
(

x− 4k4
)d

+ 4k4 has newly reducible second iterate over K.

Démonstration. We have f2(x) =
(

x− 4k4
)d2

+ 4k4. Because 4 | d2, Proposition 6.1 gives that

f2(x) is reducible over K. To show that f(x) is irreducible over K, we note that 4 ∤ d, and so by
Proposition 6.1 it is enough to show that −4k4 6∈ K2 and −4k4 6∈ Kpi for each i = 1, . . . , r. The
former follows because −1 6∈ K2 and the latter follows by hypothesis. �

Corollary 7.2. Let K be a field with a non-trivial discrete valuation. Assume that K has cha-
racteristic different from 2, and that −1 6∈ K2. Then K ∈ N∞

d,2 for all d ≡ 2 (mod 4).
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Démonstration. Let v : K∗ → Z be a (normalized) non-trivial discrete valuation on K. This map
is surjective, and taking π with v(π) = 1, we also have that v−1(m) maps bijectively to v−1(n) via
the map x 7→ πm−nx. Observe that 2 ∈ K∗ because K has characteristic 6= 2, and that if k ∈ Kn

for any n ≥ 2, then v(k) ∈ nZ. Fix d ≡ 2 (mod 4), and let p1, . . . , pr be the odd prime divisors of
d. By the Chinese Remainder Theorem, the system of congruences

x ≡ 1− 2v(2)

4
(mod pi)

has an infinite solution set S ⊂ Z. If v(k) ∈ S, then 2v(2) + 4v(k) ≡ 1 (mod pi) for all i,
and hence v(−4k4) 6∈ piZ, and thus −4k4 6∈ Kpi for all i. Hence by Theorem 7.1 we have that

f(x) =
(

x− 4k4
)d

+ 4k4 has newly reducible second iterate over K.

It remains to argue that v−1(S), and hence S, is infinite. We have already established that
v−1(m) and v−1(n) are equinumerous for any m,n ∈ Z. The only way an infinite union of equinu-
merous sets can be finite is if all are empty, but this contradicts the surjectivity of v. Thus v−1(S)
is infinite. �
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